Conditional knockdown of tubedown-1 in endothelial cells leads to neovascular retinopathy.
نویسندگان
چکیده
PURPOSE Identification of novel proteins involved in retinal neovascularization may facilitate new and more effective molecular-based treatments for proliferative retinopathy. Tubedown-1 (Tbdn-1) is a novel protein that shows homology to the yeast acetyltransferase subunit NAT1 and copurifies with an acetyltransferase activity. Tbdn-1 is expressed in normal retinal endothelium but is specifically suppressed in retinal endothelial cells from patients with proliferative diabetic retinopathy. The purpose of this study was to investigate the importance of Tbdn-1 expression in retinal blood vessels in vivo. METHODS A bitransgenic mouse model that enables conditional knockdown of Tbdn-1 specifically in endothelial cells was produced and studied using molecular, histologic, and immunohistochemical techniques and morphometric analysis. RESULTS Tbdn-1-suppressed mice exhibited retinal and choroidal neovascularization with intra- and preretinal fibrovascular lesions similar to human proliferative retinopathies. Retinal lesions observed in Tbdn-1-suppressed mice increased in severity with prolonged suppression of Tbdn-1. In comparison to normal retina, the retinal lesions displayed alterations in the basement membrane of blood vessels and in the distribution of glial and myofibroblastic cells. Moreover, the pathologic consequences of Tbdn-1 knockdown in endothelium were restricted to the retina and the choroid. CONCLUSIONS These results indicate that the maintenance of Tbdn-1 expression is important for retinal blood vessel homeostasis and for controlling retinal neovascularization in adults. Restoration of Tbdn-1 protein expression and/or activity may provide a novel approach for treating proliferative retinopathies.
منابع مشابه
Loss of tubedown expression as a contributing factor in the development of age-related retinopathy.
PURPOSE Tubedown (Tbdn), a cortactin-binding acetyltransferase subunit, regulates retinal vascular permeability and homeostasis in adulthood. Here the authors explore whether Tbdn loss during aging might contribute to the mechanisms underlying age-related neovascular retinopathy. METHODS A conditional endothelial-specific transgenic model of Tbdn loss was compared with aged mouse and human sp...
متن کاملTubedown-1 (Tbdn-1) suppression in oxygen-induced retinopathy and in retinopathy of prematurity.
PURPOSE Identification of unique proteins involved in retinopathy of prematurity (ROP) may facilitate new and more effective diagnostic tools and molecular-based treatments for ROP. Tubedown-1 (Tbdn-1), a novel homeostatic protein which copurifies with an acetyltransferase activity, is expressed in normal retinal endothelium and is specifically suppressed in retinal endothelial cells from patie...
متن کاملTubedown regulation of retinal endothelial permeability signaling pathways
Tubedown (Tbdn; Naa15), a subunit of the N-terminal acetyltransferase NatA, complexes with the c-Src substrate Cortactin and supports adult retinal homeostasis through regulation of vascular permeability. Here we investigate the role of Tbdn expression on signaling components of retinal endothelial permeability to understand how Tbdn regulates the vasculature and supports retinal homeostasis. T...
متن کاملBio010496 970..979
Tubedown (Tbdn;Naa15), a subunit of theN-terminal acetyltransferase NatA, complexes with the c-Src substrate Cortactin and supports adult retinal homeostasis through regulation of vascular permeability. Here we investigate the role of Tbdn expression on signaling components of retinal endothelial permeability to understand how Tbdn regulates the vasculature and supports retinal homeostasis. Tbd...
متن کاملMyeloid-Derived Vascular Endothelial Growth Factor and Hypoxia-Inducible Factor Are Dispensable for Ocular Neovascularization—Brief Report
OBJECTIVE Ocular neovascularization (ONV) is a pathological feature of sight-threatening human diseases, such as diabetic retinopathy and age-related macular degeneration. Macrophage depletion in mouse models of ONV reduces the formation of pathological blood vessels, and myeloid cells are widely considered an important source of the vascular endothelial growth factor A (VEGF). However, the imp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 45 10 شماره
صفحات -
تاریخ انتشار 2004